

3D Reconstruction of CT Colonography Models for
VR/AR Applications using Free Software Tools

Soraia Figueiredo Paulo1, Nuno Figueiredo2, Joaquim Armando Jorge1,3, Daniel Simões Lopes1

1 INESC-ID, Lisboa, Portugal

2 Colorectal Surgery, Champalimaud Foundation, Lisbon, Portugal
3 Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Figure 1. CT Colonography 3D reconstruction: (A) Original CT slice; (B) Segmented colon (red) highlighted in the
CT slice; (C) Reconstructed 3D model with centerline (red)

Computed Tomography Colonography (CTC) is an established non-invasive colorectal screening tool
that can replace traditional colonoscopy [1, 2]. As an image-based procedure, CTC 3D reconstruction
pipeline requires a CT acquisition after intestinal preparation, namely in supine or prone position.
Afterwards, a sequence of image processing and mesh adjustment techniques recreate a subject-
specific 3D model of a colon from the CT scan images. Similarly to colonoscopy, medical
professionals are able to navigate along a planned path between the rectum and the cecum, usually
defined by the lumen’s centerline. The goal of this tutorial is to show how a well-described geometric
modelling pipeline [3] can be used to reconstruct subject-specific 3D models of large intestines from
CTC images. The proposed pipeline relies on free and open-source software, which makes it readily
accessible to other practitioners, researchers and educators. The reconstructed 3D colon and
centerline can then be imported into a game engine, such as Unity 3D (https://unity3d.com/), to be
used as digital content for Virtual Reality or Augmented Reality applications, using commercial off-the-
shelf apparatus, such as Oculus Rift or HTC Vive. Figure 2 illustrates all pipeline stages that are
described in the following sections.

Figure 2. CT Colonography 3D reconstruction pipeline: each stage (box) is associated with a specific software
and file extension (indicated by the dashed lines). The final 3D model is a combination of the final mesh and the
result of the Mean Curvature Skeletons (MCS) algorithm.

In this tutorial, we used a single CTC dataset available in The Cancer Imaging Archive [4] (subject ID:
CTC-3105759107), which was acquired in a supine position, had almost no liquid and presented large
(>10mm) and quite visible polyps along with several diverticula.

CTC
images

Image
Segmentation

Medical Images
*.dcm

ITK-SNAP
*.mha

Surface Mesh
Generation and

Adjustments

Centerline
Extraction

Paraview
*.ply

Blender
*.obj

MCS
*.cg

Import into Unity
3D

1. Image Segmentation

The first stage consists of identifying the colon inner surface from a set of 2D CTC images using the
ITK-SNAP software (www.itksnap.org). CTC images present high contrast between the luminal space
(air: black) and luminal surface (wall: light grey), which facilitates image segmentation by global
thresholding followed by semi-automatic active contours based on region competition. Both
segmentation techniques partition the original grayscale slices into binary images, where the resulting
non-null pixel values correspond to the intensities of the luminal space. Note that active contours
complement the global thresholding techniques by allowing a set of snakes, which are strategically
placed along the region of interest (ROI), to iteratively evolve from a very rough estimate obtained by
global thresholding to a very close approximation of the anatomical structure of interest (Figure 3,
Figure 4).

Figure 3. Active contours progression at different time steps (transversal view of the segmented data).

Figure 4. Active contours model progression at different time steps (3D view of evolving contours).

t=0 t=50 t=100

t=150 t=220 t=300

t=0 t=50 t=100

t=150 t=220 t=300

2. Surface Mesh Generation and Adjustments

After segmentation, ITK-SNAP automatically generates a triangular 3D surface mesh using the
marching cubes algorithm. Since the segmented images consist of a discrete scalar field, the
extracted mesh poses two problems: (i) a stair-step artefact, and (ii) a large number of unnecessary
vertices (Figure 5 (A)). Therefore, it is necessary to perform mesh smoothing to attenuate the stair-
step artefact, followed by decimation to reduce the number of vertices (or triangles) of the surface
mesh. To do so, the user must export the final segmentation metadata file (*.mha) from ITK-SNAP
and import the file into Paraview (www.paraview.org). After applying the smoothing filter, which
consists of a low-pass filter carried on for 500 iterations, the resulting mesh enters the decimation
process to remove at least 75% of the mesh triangles. Finally, the same smoothing filter is applied to
remove eventual decimation mesh artifacts (Figure 5 (B)). The final mesh can then be exported as
*.ply (ASCII) file and converted to an *.obj file via Blender (www.blender.org).

Figure 5. 3D mesh of a colon: (A) before and (B) after Smoothing → Decimation → Smoothing

3. Centerline Extraction

To compute the planned path that guides inner colon navigation, it is necessary to compute the 3D
centerline of the colon mesh. Software made available by Tagliasacchi et al. [5] generates a 3D mesh
skeletonization using the Mean Curvature Flow (MCF) filter (Figure 6). Once the user imports the *.obj
3D colon, it is necessary to apply the Voronoi based Medial Axis Transformation (MAT) since it is the
input of the MCF filter. For the purpose of our example, we required 26 iterations, using all default
values, except for edge_TH=1,75 . The final centerline model is exported as a .cg file.

Figure 6. Skeletonization progression at different time instants: MCF iterative evolution.

4. Import 3D colon and centerline into Unity Game Engine

To generate the final model, the .*obj file of the 3D mesh of the colon can be imported into Unity 3D
game engine (https://unity3d.com/) and dragged into the scene. A GameObject with the same name
as the *.obj file is automatically created, along with a default GameObject child including the mesh
filter, the mesh renderer and the default material components. For the purpose of this tutorial we will
refer to the GameObject of the 3D mesh of the colon as 3DColonModel.

In order to access the interior and exterior of the luminal wall, Inside and Outside meshes are
required. To do so, it is necessary to duplicate the default child of the 3DColonModel, and rename
one of the meshes as Inside and the other as Outside. To display the inner wall, the reverse normals
of the Inside mesh must be computed, which requires the user to attach a ReverseNormals.cs script
to the Inside GameObject (http://wiki.unity3d.com/index.php/ReverseNormals), as well as a Mesh
Collider component. The color of the rendered 3DColonModel depends on the material that is
associated to the mesh renderer. In our case, we created a material called ColonColor and defined
the RGBA color as (255,207,171,255). This material is associated both to the Inside and the Outside
mesh renderers. Figure 7 illustrates the resulting 3DColonModel.

Figure 7. 3D Colon Model views: (A) Outside; (B) Inside.

The planned path is created based on the spline interpolation of the list of points made available
through the centerline.cg file. To start, the user must create a child GameObject of Outside, called
SplineRoot. Then, it is necessary to attach a script file to SplineRoot, which we called DrawLines.cs,
responsible for drawing the centerline. This script needs two other scripts: ControlPointsParser.cs and
NearestNeighborList.cs (http://it-medex.inesc-id.pt/project/ctc-models). In order to obtain the list of
points, DrawLines.cs receives the path for the centerline.cg file and sends it to
ControlPointsParser.cs, that is responsible for parsing the file and returning the corresponding list of
points. However, the points in the list are not made available in the correct order. To address this
issue, DrawLines.cs sends the imported list to NearestNeighborList.cs, which calculates the pairwise
distance between all points and determines the correct order of points based on the minimum
distance value between each pair. Finally, DrawLines.cs creates a new GameObject, myLine, and
attaches a LineRenderer component to it. The centerline is drawn by the LineRenderer using the
points from the centerline’s ordered list (Figure 8).

Figure 8. 3D Colon Model’s interior displaying the centerline (light grey line).

As a remark, the reconstructed model of this tutorial was used by Lopes et al. [6] to evaluate the
potential of a set of interaction techniques to perform CTC reading in an immersive VR environment.

References

1. de Haan, M. C., van Gelder, R. E., Graser, A., Bipat, S., and Stoker, J. (2011). Diagnostic value of CT-colonography
as compared to colonoscopy in an asymptomatic screening population: a meta-analysis. European radiology, 21(8),
1747-1763. https://doi.org/10.1007/s00330-011-2104-8

Summary

We provide a short step-by-step description of the stages involved in this tutorial.

1) Import the 2D CTC image dataset into ITK-SNAP

a) Enter the Active Contour Segmentation Mode
b) Select Segment 3D
c) Define a global threshold to identify the luminal surface
d) Define the seed points
e) Run the active contour evolution
f) Save the segmentation image in .mha format

2) Import the segmentation image into Paraview

a) Select Contour
b) Apply smoothing and decimation filters
c) Export the 3D mesh in .ply format

3) Import the 3D mesh into Blender and convert it into an .obj file

4) Obtain the 3D centerline of the colon’s mesh using the MCS algorithm

a) Apply the Voronoi based MAT
b) Apply the MCF filter
c) Export the centerline as a .cg file

5) Import into Unity

a) Drag the 3D mesh into the scene
b) Duplicate the mesh
c) Rename the GameObjects as Inside and Outside
d) Attach the ReverseNormals.cs script and add a Mesh Collider component to the Inside

GameObject
e) Create a material to color the 3D colon model
f) Add the material both to the Inside and Outside mesh renderers
g) Create a child GameObject of Outside called SplineRoot
h) Add the DrawLines.cs, ControlPointsParser.cs and NearestNeighborList.cs scripts to the

project’s Scripts folder (AssetsScripts)
i) Attach the DrawLines.cs script to SplineRoot
j) Fill in the path to the centerline’s .cg file in the DrawLines.cs script

6) Run Unity

2. Pickhardt, P. J., Hassan, C., Halligan, S., and Marmo, R. (2011). Colorectal cancer: CT colonography and
colonoscopy for detection—systematic review and meta-analysis. Radiology, 259(2), 393-405.
https://doi.org/10.1148/radiol.11101887

3. Ribeiro, N. S., Fernandes, P. C., Lopes, D. S., Folgado, J. O., and Fernandes, P. R. (2009). 3-D solid and finite

element modeling of biomechanical structures-a software pipeline. Proceedings of the ESMC2009 7th Euromech
Solid Mechanics Conference, Lisbon, Portugal, September 2009, 2-17.

4. Smith, K., Clark, K., Bennett, W., Nolan, T., Kirby, J., Wolfsberger, M., Moulton, J., Vendt, B. and Freymann, J.

(2015). Data From CT_COLONOGRAPHY. The Cancer Imaging Archive.
https://doi.org/10.7937/K9/TCIA.2015.NWTESAY1

5. Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. (2012, August). Mean curvature skeletons. In Computer

Graphics Forum, 31 (5), 1735-1744. https://doi.org/10.1111/j.1467-8659.2012.03178.x

6. D.S. Lopes, D. Medeiros, S.F. Paulo, P.B. Borges, V. Nunes, V. Mascarenhas, M. Veiga, J.A. Jorge, Interaction
Techniques for Immersive CT Colonography: A Professional Assessment, In: Frangi AF, Schnabel JA, Davatzikos C,
Alberola-Lopez C, Fichtinger G. (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2018.
MICCAI 2018. Lecture Notes in Computer Science, Springer, Cham, 2018 (accepted paper)

